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ABSTRACT

User reviews of mobile apps provide a communication channel for

developers to perceive user satisfaction. Many app features that

users have problems with are usually expressed by key phrases

such as “upload pictures”, which could be buried in the review texts.

The lack of fine-grained view about problematic features could

obscure the developers’ understanding of where the app is frus-

trating users, and postpone the improvement of the apps. Existing

pattern-based approaches to extract target phrases suffer from low

accuracy due to insufficient semantic understanding of the reviews,

thus can only summarize the high-level topics/aspects of the re-

views. This paper proposes a semantic-aware, fine-grained app

review analysis approach (SIRA) to extract, cluster, and visualize

the problematic features of apps. The main component of SIRA is

a novel BERT+Attr-CRF model for fine-grained problematic fea-

ture extraction, which combines textual descriptions and review

attributes to better model the semantics of reviews and boost the

performance of the traditional BERT-CRF model. SIRA also clusters

the extracted phrases based on their semantic relations and presents

a visualization of the summaries. Our evaluation on 3,426 reviews

from six apps confirms the effectiveness of SIRA in problematic

feature extraction and clustering. We further conduct an empirical

study with SIRA on 318,534 reviews of 18 popular apps to explore

its potential application and examine its usefulness in real-world

practice.
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1 INTRODUCTION

Mobile app development has been active for over a decade, generat-

ing millions of apps for a wide variety of application domains such

as shopping, banking, and social interactions. They have now be-

come indispensable in our daily life. The importance of mobile apps

urges the development team to make every endeavor to understand

users’ concerns and improve app quality.

Users often write reviews of the mobile apps they are using on

distribution platforms such as Apple Store and Google Play Store.

These reviews are short texts that can provide valuable informa-

tion to app developers, such as user experience, bug reports, and

enhancement requests [16, 27, 41, 52]. A good understanding of

these reviews can help developers improve app quality and user

satisfaction [15, 30, 48]. However, popular apps may receive a large

number of reviews every day. Therefore, manually reading and

analyzing each user review to extract useful information is very

time-consuming,

Figure 1: An example app review and problematic feature.

In recent years, automated techniques for mining app reviews

have attracted much attention [21, 45, 47]. These techniques can

help reduce the effort required to understand and analyze app re-

views in many ways, such as topic discovery [6, 40, 48], and key

phrase extraction [12, 15, 27, 52, 57]. However, existing work about

topic discovery can only identifyWHAT the users complain about

[30, 48, 57], such as the high-level topics/aspects of the reviews (e.g.,

compatibility, update, connection, etc). Taken the review of Insta-

gram in Figure 1 as an example, existing approaches would capture

terms such as update, cache, uninstall, yet missing its core intent.

Developers still could not have a concrete understanding about

which specific features of the app the users are complaining about.

Furthermore, existing work about key phrase extraction mainly

utilizes heuristic-based techniques (such as Part-of-Speech patterns,
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parsing tree, and semantic dependence graph) to extract the target

phrases, which could have insufficient semantic understanding of

the reviews. As a result, their accuracy is less satisfactory and can

be further improved.

In comparison, we aim at exploiting theWHERE aspect of the app

reviews, and providing an accurate fine-grained landscape about

where an app frustrates the users, i.e., which specific app features1

the users have problems with. As an example in Figure 1, the review

is about a crashing problem, and the problematic feature the user

complained about is upload to my story. The fine-grained knowledge

about problematic features could facilitate app developers in un-

derstanding the user concerns, localizing the problematic modules,

and conducting follow-up problem-solving activities.

To overcome the drawbacks of existing work and better exploit

the app reviews, this paper proposes a Semantic-aware, fIne-grained

app Review Analysis approach (SIRA), which can extract, cluster,

and visualize the problematic features of apps. More specifically,

SIRA includes a novel BERT+Attr-CRF model to automatically ex-

tract the fine-grained phrases (i.e., problematic features). It com-

bines the review descriptions and review attributes (i.e., app cat-

egory and review description sentiment) to better model the se-

mantics of reviews and boost the performance of the traditional

BERT-CRF model [63]. With the extracted phrases, SIRA then de-

signs a graph-based clustering method to summarize the common

aspects of problematic features based on their semantic relations. Fi-

nally, SIRA presents a visualization of the summarized problematic

features.

We evaluate SIRA on 3,426 reviews involving 8,788 textual sen-

tences from six apps spanning three categories. For problematic

feature extraction, the overall precision and recall achieved by SIRA

is 84.27% and 85.06% respectively, significantly outperforming the

state-of-the-art methods. SIRA can also achieve high performance

in problematic feature clustering, outperforming two commonly-

used baselines. We further conduct an empirical study with SIRA on

318,534 reviews of 18 popular apps (reviews spanning 10 months)

to explore its potential application and examine its usefulness in

real-world practice. We find that different apps have their unique

problematic features and problematic feature distributions. The

results also reveal that different apps can share some common

problematic features. This observation can facilitate mobile app

testing, e.g., recommending bug-prone features to similar apps for

test prioritization.

The main contributions of this paper are as follows:

• A semantic-aware, fine-grained app review analysis approach

(SIRA) to extracting, clustering, and visualizing the problem-

atic features of apps. In SIRA, we design a BERT+Attr-CRF

model to automatically extract the fine-grained phrases (i.e.,

problematic features), and a graph-based clustering method

to summarize the common aspects of problematic features.

• The evaluation of the proposed SIRA on 3,426 reviews in-

volving 8,788 textual sentences from six apps spanning three

categories, with affirmative results.

1We refer to a feature as a distinctive, user-visible characteristic of a mobile app
[29][65], e.g., sending videos, viewing messages, etc.

• A large-scale empirical study on 318,534 reviews of 18 popu-

lar apps, to explore its potential application and usefulness

in real-world practice.

• Public accessible source code and experimental data at https:

//github.com/MeloFancy/SIRA.

2 BACKGROUND AND RELATEDWORK

Named Entity Recognition (NER). NER is a classic Natural Lan-

guage Processing (NLP) task of sequence tagging [25, 66]. Given a

sequence of words, NER aims to predict whether a word belongs

to named entities, e.g., names of people, organizations, locations,

etc. NER task can be solved by linear statistical models, e.g., Max-

imum Entropy Markov models [43, 53], Hidden Markov Models

[11] and Conditional Random Fields (CRF) [34]. Deep learning-

based techniques would use a deep neural network to capture

sentence semantics and a CRF layer to learn sentence-level tag

rules. Typical network structures include convolutional neural net-

work with CRF (Conv-CRF) [7], Long Short-Term Memory network

with CRF (LSTM-CRF) and bidirectional LSTM network with CRF

(BiLSTM-CRF) [25]. By taking advantage of the bidirectional struc-

ture, BiLSTM-CRF model can use the past and future input infor-

mation and can usually obtain better performance than Conv-CRF

and LSTM-CRF.

Language model pre-training techniques have been shown to

be effective for improving many NLP tasks [10, 22]. BERT (Bidi-

rectional Encoder Representations from Transformers) [10] is a

Transformer-based [55] representation model that uses pre-training

to learn from the raw corpus, and fine-tuning on downstream tasks

such as the NER task. Employing BERT to replace BiLSTM (short

for BERT-CRF) could lead to further performance boosts [63]. BERT-

CRF model benefits from the pre-trained representations on large

general corpora combined with fine-tuning techniques.

Mining user reviews. Harman et al. introduced the concept of

app store mining by identifying correlations between the customer

ratings and the download rank of a mobile app [21, 42]. Palomba

et al. found that developers implementing user reviews would be

rewarded in terms of app ratings [47]. Noei et al. investigated the

evolution of app ranks and identified the variables that share a

strong relationship with ranks, e.g., number of releases [45].

Previous studies on mining user reviews emphasized the topic

discovery/classification and summarization of reviews as a way

of aggregating a large amount of text and reducing the effort re-

quired for analysis [6, 40, 46, 48, 52]. These classifications are from

different points of view, e.g., whether or not the reviews include

bug information, requests for new features [40], whether they are

informative [6], whether reviews across different languages and

platforms are similar [46], or based on a taxonomy relevant to

software maintenance and evolution [48], etc. Other studies fo-

cused on the information extraction from app reviews consider-

ing the fact that reading through the entire reviews is impractical

[12, 15, 16, 30, 33, 57]. For example, the types of complains [30], the

app aspects loved by users [15], user rationale [33] and summaries

for guiding release planning [56] are extracted and summarized for

facilitating the review understanding.

There are some studies on mining API-related opinions from

informal discussions, such as Q&A websites (e.g., Stack Overflow)
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Figure 2: The overview of SIRA.

to alleviate developers’ burden in performing manual searches

[38, 54]. These methods mainly depend on fuzzy matching with

pre-built API databases, which cannot work in our context. There

are also some studies on mining social media data (e.g., Twitter

data) [18]. The app reviews mainly convey users’ feedback about

an app, while the Twitter data is more general and contains daily

messages. Therefore, general-purpose techniques for Twitter data

require customizations to better understand app reviews.

Some studies are similar to our work, such as topic discov-

ery/classification, sentiment analysis, etc. However, they do not

support the extraction of fine-grained features well. For example,

INFAR [12] mines insights from app reviews and generates sum-

marizes after classifying sentences into pre-defined topics. The

discovered topics from INFAR are more coarse-grained (e.g., GUI,

crash, etc.). Our method can highlight the fine-grained features (e.g.,

"push notification") that users complained about; SUR-Miner [15]

and Caspar [16] uses techniques, such as dependency parsing and

Part-of-Speech pattern, to extract some aspects from app reviews.

Guzman et al. [19] proposed a method, which can only extract fea-

tures consisting of two words (i.e., collocations) from the reviews

based on word co-occurrence patterns, which is not applicable in

our context, because the problematic features might contain mul-

tiple words; Opiner [54] is a method to mining aspects from API

reviews. It extracts API mentions from API reviews through exact

and fuzzy name matching with pre-built API databases, which is

difficult to work in our context because we do not have a database

of feature phrases in advance. These studies utilized pattern-based

method to extract the target phrases, which did not consider the

review semantics sufficiently, and had bad tolerance to noise; by

comparison, our proposed approach is a semantic-aware approach.

Mining open source bug reports. Previous studies have pro-

posed variousmethods to automatically classify bug reports [28, 39],

detect the duplicate reports [8, 60, 67], summarize the reports [20],

and triage the reports [23, 36, 62], etc. The bug reports in open

source or crowd testing environment are often submitted by soft-

ware practitioners, and often described with detailed bug expla-

nation and in relatively longer length. Yet the app reviews are

submitted by the end users and in much fewer words, thus the

above mentioned approaches could not be easily adopted in this

context.

Semantic-aware approaches in SE. Researchers have utilized

deep learning based techniques to capture the semantics of software

artifacts and facilitate the follow-up software engineering tasks.

Such kinds of studies include neural source code summarization

with attentional encoder-decoder model based on code snippets and

summaries [64], requirement traceability by incorporating require-

ments artifact semantics and domain knowledge into the tracing

solutions [17], knowledge mining of informal discussions on social

platforms [59], etc. This paper focuses on a different type of soft-

ware artifact (i.e., app reviews) and incorporates a state-of-the-art

technique (i.e., BERT) for the semantic-aware learning, and the

results show its effectiveness.

3 APPROACH

This paper proposes a Semantic-aware, fIne-grained app Review

Analysis approach SIRA to extract, cluster, and visualize the prob-

lematic features of apps (i.e., the phrases in app reviews depicting

the feature which users have problems with, see the examples in

Figure 1.)

Figure 2 presents the overview of SIRA, which consists of four

steps. First, it preprocesses the app reviews crawled from online

app marketplace, to obtain the cleaned review descriptions and

the review attributes (i.e., the category of the belonged app c and
the review description sentiment s). Second, it builds and trains a
BERT+Attr-CRF model to automatically extract the fine-grained

phrases about problematic features. BERT+Attr-CRF combines the

review descriptions and two review attributes as input to better

model the semantics of reviews and boost the phrase extraction

performance of the traditional BERT-CRF model. Third, SIRA clus-

ters the extracted phrases with a graph-based clutering method to
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summarize the common aspects of problematic features based on

their semantic relations. And finally, it presents a visualization

view to illustrate the summaries and compare the problematic fea-

tures among apps, in order to acquire a better understanding of

where users complain about across apps.

3.1 Data Preprocessing

Data preprocessing mainly includes two steps: textual data cleaning

and review attribute collection.

3.1.1 Textual Data Cleaning.

The raw app reviews are often submitted via mobile devices and

typed using limited keyboards. This situation leads to the frequent

occurrences of massive noisy words, such as repetitive words, mis-

spelled words, acronyms and abbreviations [13, 15, 57, 58].

Following other CRF-based practices [25], we treat each sen-

tence as an input unit. We first split each review into sentences by

matching punctuations through regular expressions. Then we filter

all non-English sentences with Langid2. We tackle the noisy words

problem with the following steps:

• Lowercase: we convert all the words in the review descrip-

tions into lowercase.

• Lemmatization: we perform lemmatization with Spacy3 to

alleviate the influence of word morphology.

• Formatting: we replace all numbers with a special symbol

“<number>” to help the BERT model unify its understanding.

Besides, we build a list containing all the app names crawled

from Google Play Store, and replace them with a uniform

special symbol “<appname>”.

3.1.2 Review Attribute Collection.

Some attributes related to the review or the app can facilitate the

extraction of problematic features in Section 3.2. This subsection

collects these attributes, i.e., the category of the belonged app c and
the review description sentiment s as shown in Figure 2 and Figure
3. The reason why we include the app category is that apps from

different categories would exert unique nature in terms of func-

tionalities and topics [14]. Furthermore, review descriptions with

negative sentiment would be more likely to contain problematic

features, compared with the description with positive sentiment.

Hence, we include review description sentiment as the second at-

tribute in our model.

App categories can be directly collected when crawling data

from Google Play Store. To obtain the sentiment for each review

sentence, we employ SentiStrength-SE [26], a domain-specific senti-

ment analysis tool especially designed for software engineering text.

SentiStrength-SE would assign a positive integer score in the range

of 1 (not positive) to 5 (extremely positive) and a negative integer

score in the range of -1 (not negative) to -5 (extremely negative) to

each sentence. Employing two scores is because previous research

from psychology [2] has revealed that human beings process the

positive and negative sentiment in parallel. Following previous

work [14, 19], if the absolute value of the negative score multiplied

by 1.5 is larger than the positive score, we assign the sentence the

2https://github.com/saffsd/langid.py
3https://spacy.io

Figure 3: Detailed structure of BERT+Attr-CRF.

negative sentiment score; otherwise, the sentence is assigned with

the positive sentiment score.

3.2 Problematic Feature Extraction

We model the problematic feature extraction problem as a Named

Entity Recognition (NER) task, where we treat problematic features

as named entities, and solve the problem with the commonly-used

CRF technique. To better capture the semantics of the app reviews,

we employ the BERT model to encode the review descriptions. Fur-

thermore, we incorporate the review attributes in the CRF model

to further boost the recognition of problematic features. Two at-

tributes, i.e., category of the belonged app c and review description

sentiment s (see Section 3.1.2), are utilized in our model.
Following other NER tasks, we use the BIO tag format [9, 50] to

tag each review sentence, where

• B-label (Beginning): The word is the beginning of the target

phrase.

• I-label (Inside): The word is inside the target phrase but not

its beginning.

• O-label (Outside): The word is outside the target phrase.

The BIO-tagged review sentence is input into the BERT+Attr-CRF

model for further processing.

Figure 3 presents the detailed structure of our proposed BERT+Attr-

CRF model. Since app reviews are short texts, and the involved vo-

cabulary is relatively small, we use the pre-trainedmodelBERTBASE
4,

which has 12 layers, 768 hidden dimensions and 12 attention heads.

It has been pre-trained on the BooksCorpus (800M words) and Eng-

lish Wikipedia (2,500M words), and will be fine-tuned using our

own data. Each input sentence is represented by 128 word tokens

with a special starting symbol [CLS]. For those not long enough,
we use a special symbol [PAD] to pad them to the length of 128,

following the common practice. The outputs of BERT are fed into a

dropout layer to avoid over-fitting. Finally, we obtain n (the length
of the input sentence) vectors, with each vector (denoted as vi )
having 768 dimensions and corresponding to each input word.

4https://huggingface.co/bert-base-uncased
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We incorporate the review attributes into the textual vectors (v)
to jointly capture the underlying meaning of the review sentence.

The review attributes (c and s) extracted in Section 3.1.2 are discrete
values. We first convert them into continuous vectors (denoted

as hc and hs ) by feeding them into the embedding layers. Taking

attribute s as an example, it can take ten values (-5 to -1 and 1 to 5).
The embedding layer could represent each value with a continuous

vector, which can be trained jointly with the whole model. We

then concatenate hc , hs and v (hc
⊕

hs
⊕

v) to obtain a vector
(denoted as v ′

i ) for each input word. The concatenated vectors first

go through a Multi-layer Perceptron (MLP), which computes the

probability vector (denoted p) of BIO tags for each word:

p = f (W [hc ;hs ;v]) (1)

where f (·) is the activation function, andW is trainable parame-

ters in MLP. [hc ;hs ;v] is the concatenation of these three vectors.
Finally, p is input into the CRF layer to determine the most likely
tag sequence based on Viterbi Algorithm [1].

Based on the derived tag sequence, we can obtain the phrases

about problematic features. For example, if our input review sen-

tence is “whenever I go to send a video it freezes up”, and the output

tag sequence is “< O >< O >< O >< O >< B >< I >< I ><
O >< O >< O >”, we can determine the extracted problematic
feature as “send a video” based on the BIO format.

The loss function of the model should measure the likelihood of

the whole true tag sequence, instead of the likelihood of the true

tag for each word in the sequence. Therefore, the commonly-used

Cross Entropy is not suitable in this context. Following existing

studies [25], the loss function contains two parts: the emission score

and the transition score. It is computed as:

s([x]T1 , [l]
T
1 , θ̃ ) =

T∑
t=1

([A][l ]t−1,[l ]t + [fθ ][l ]t ,t ) (2)

where [x]T1 is the sentence sequence of length T , and [l]T1 is the

tag sequence. fθ ([x]
T
1 ) is the emission score, which is the output of

MLP with parameters θ , and [A]i , j is the transition score, which is
obtained with the parameters from the CRF layer. The transition

score [A]i , j models the transition from the i-th state to the j-th

state in the CRF layer. θ̃ = θ ∪
{
[A]i , j∀i, j

}
is the new parameters

for the whole network. The loss of a sentence [x]T1 along with a

sequence of tags [l]T1 is derived by the sum of emission scores and

transition scores.

Model Training: The hyper-parameters in SIRA are tuned care-

fully with a greedy strategy to obtain the best performance. Given a

hyper-parameter P and its candidate values {v1,v2, ...,vn }, we per-
form automated tuning forn iterations, and choose the values which
leads to the best performance as the tuned value of P . After tuning,
the learning rate is set as 10−4. The optimizer is Adam algorithm

[31]. We use the mini-batch technique for speeding up the training

process with batch size 32. The drop rate is 0.1, which means 10%

of neuron cells will be randomly masked to avoid over-fitting.

We implement this BERT+Attr-CRF model using Transformers5,

which is an open-source Pytorch library for Natural Language Un-

derstanding andNatural Language Generation. Our implementation

and experimental data are available online6.

3.3 Problematic Feature Clustering

The extracted problematic features might be linguistically differ-

ent yet semantically similar. To provide a summarized view of the

problematic features, this step clusters the extracted problematic

features based on the topics derived from their semantic relations.

Conventional topic models use statistical techniques (e.g., Gibbs

sampling) based on word co-occurrence patterns [49]. They are not

suitable for the short texts (i.e., problematic features in our context),

because the co-occurrence patterns can hardly be captured from

the short text, instead the semantic information should be taken

into consideration. Additionally, these models need to specify the

number of clusters/topics, which is hardly determined in our con-

text. To tackle these challenges, we design a graph-based clustering

method, which employs semantic relations of problematic features.

First, we convert problematic feature phrases into 512 dimen-

sional vectors using Universal Sentence Encoder (USE) [5]. It is a

transformer-based sentence embedding model that captures rich

semantic information, and has been proven more effective than

traditionally-used word embedding models [16]. Second, we con-

struct a weighted, undirected graph, where each problematic feature

is taken as a node, and the cosine similarity score between USE vec-

tors of two problematic features is taken as the weight between the

nodes. If the score is over a certain ratio, we add an edge between

two nodes. The ratio is an input hyper-parameter, which measures

the semantic correlations between problematic features. The higher

ratio leads to higher cluster cohesion. We set it as 0.5 after tuning

in the training data. Third, we perform Chinese Whispers (CW)

[3], which is an efficient graph clustering algorithm, on this graph

to cluster problematic features.

With this graph-based clustering method, SIRA can group the

problematic features that are semantically similar into the same

topic. We implement our clustering method in python, based on

the open-source implementation of USE7 and CW8.

3.4 Visualization

In order to display the clustering results of multiple apps more

intuitively, we provide a visualized view in the form of bubble

charts (an example is shown in Figure 4). The y-axis demonstrates

the names of investigated apps, and the x-axis represents the id of

each cluster. The size of the bubble (denoted as sa,c ) of app a in
cluster c is defined as the ratio between the number of problematic
features of app a in cluster c and the total number of problematic
features in app a.

When the cursor hovers over the bubble, it would display detailed

information of this cluster, including the cluster name, the number

of problematic features, and example reviews with corresponding

problematic features. For the cluster name, we first find the most

5https://github.com/huggingface/transformers
6https://github.com/MeloFancy/SIRA
7https://github.com/MartinoMensio/spacy-universal-sentence-encoder
8https://github.com/nlpub/chinese-whispers-python
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Table 1: Experimental dataset.

Category App # Reviews # Sentences

Social
Instagram 582 1,402
Snapchat 585 1,388

Communication
Gmail 586 1,525

Yahoo Mail 542 1,511

Finance
BPI Mobile 588 1,488
Chase Mobile 543 1,474

Overall 3,426 8,788

frequent noun or verb (denoted asw) among all problematic features
in the cluster. We then count the number of problematic features

containingw , and treat themost frequent phrase as the cluster name
(i.e., the representative problematic feature). By comparing the

relative sizes of bubbles, one can intuitively acquire the distribution

of problematic features across apps.

4 EXPERIMENTAL DESIGN

4.1 Research Questions

We answer the following three research questions:

• RQ1:What is the performance of SIRA in extracting prob-

lematic features?

• RQ2: Is each type of the review attributes employed in SIRA

necessary?

• RQ3:What is the performance of SIRA in clustering prob-

lematic features?

RQ1 investigates the performance of SIRA in problematic feature

extraction, and we also compare the performance with four state-

of-the-art baselines (see Section 4.3) to further demonstrate its

advantage. RQ2 conducts comparison with SIRA’s three variants

to demonstrate the necessity of the employed review attributes in

BERT+Attr-CRF model. RQ3 investigates the performance of SIRA

in problematic feature clustering, and we also compare SIRA with

two commonly-used baselines (see Section 4.3).

4.2 Data Preparation

We use the reviews of six apps from three categories (two in each

category) in our experiments. All six apps are popular and widely-

used by a large number of users. We first crawl the app reviews

from Google Play Store submitted during August 2019 to January

2020, with the tool google-play-scraper9. For each app, we then

randomly sample around 550 reviews (about 1500 sentences) and

label them for further experiments. Table 1 elaborates the statistics

of the experimental dataset in detail. It contains 3,426 reviews and

8,788 sentences in total.

Three authors then manually label the app reviews to serve as

the ground-truth in verifying the performance of SIRA. To guar-

antee the accuracy of the labeling outcomes, the first two authors

firstly label the app reviews of an app independently, i.e., mark the

beginning and ending position of the problematic features in each

review sentence. Second, the fourth author compares the labeling

results, finds the difference, and organizes a face-to-face discussion

among them three to determine the final label. All the six apps

follow the same process. For the first labeled app (Instagram), the

9https://github.com/facundoolano/google-play-scraper

Cohen’s Kappa is 0.78 between the two participants, while for the

last labeled app (Chase Mobile), the Cohen’s Kappa is 0.86. After

two rounds of labeling, a common consensus is reached for every

review sentence.

4.3 Baselines

4.3.1 Baselines for Problematic Feature Extraction.

We select methods that can extract target phrases from app re-

views as baselines for problematic feature extraction. To the best of

our knowledge, existing methods are mainly pattern-based, which

can be classified into three types based on the techniques: 1) Part-

of-Speech (PoS) Pattern: SAFE [27] and PUMA [58]; 2) Depen-

dency Parsing plus PoS Pattern: Caspar [16] and SUR-Miner [15];

3) Pattern-based Filter plus Text Classification: KEFE [61]. We se-

lect the representative method from each type as baselines, i.e.,

KEFE, Caspar, and SAFE. In addition, since we model the feature

extraction as an NER task, we also include BiLSTM-CRF [25], a

commonly-used technique in NER tasks, as a baseline. We intro-

duce four baselines in detail below:

BiLSTM-CRF [25]: A commonly-used algorithm in sequence

tagging tasks such as NER. Being a deep learning-based technique,

it utilizes a BiLSTM to capture sentence semantics and a CRF layer

to learn sentence-level tags.

KEFE [61]: A state-of-the-art approach for identifying key fea-

tures from app reviews. A key feature is referred as the features

that are highly correlated to app ratings. It firstly employs a pattern-

based filter to obtain candidate phrases, and then a BERT-based

classifier to identify the features. Since its patterns are designed for

Chinese language, we replace them with the patterns in SAFE [27]

to handle English reviews.

Caspar [16]: A method for extracting and synthesizing user-

reported mini stories regarding app problems from reviews. We

treat its first step, i.e., events extraction, as a baseline. An event is

referred as a phrase that is rooted in a verb and includes other at-

tributes related to the verb. It employed pattern-based and grammat-

ical NLP techniques such as PoS tagging and dependency parsing on

review sentences to address this task. We use the implementation

provided by the original paper10.

SAFE [27]: A method for extracting feature-related phrases from

reviews by 18 PoS patterns. For example, the pattern Verb-Adjective-

Noun can extract features like “delete old emails”. We implement all

18 patterns to extract the phrases based on the NLP toolkit NLTK11.

4.3.2 Baselines for problematic feature Clustering.

We employ the following two baselines for problematic feature

clustering, which are commonly used for mining topics of app

reviews:

K-Means: It is a commonly-used clustering algorithm, and was

employed to cluster the keywords of app reviews [57]. In this work,

we first encode each problematic feature with TF-IDF [51] vectors,

then run K-Means to cluster all problematic features into topics,

following previous work [57]. We apply the implementation in the

library scikit-learn12.

10https://hguo5.github.io/Caspar
11https://github.com/nltk/nltk
12https://scikit-learn.org
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LDA [4]: It is a commonly-used topic clustering algorithm, and

was utilized to group the app features [19]. In this work, we treat

the extracted problematic features as documents and run LDA for

topic modeling, following previous work [19]. We employ the im-

plementation in the library Gensim13.

4.4 Experimental Setup

To answer RQ1, we conduct nested cross-validation [32] on the

experimental dataset. The inner loop is for selecting optimal hyper-

parameters, which are used for evaluating performance in the outer

loop. In the outer loop, we randomly divide the dataset into ten folds,

use nine of them for training, and utilize the remaining one fold for

testing the performance. The process is repeated for ten times, and

the average performance is treated as the final performance. In the

inner loop, we use eight folds for training and one fold for validation.

We run each baseline (see Section 4.3) to obtain its performance

following the same experimental setup, and present the evaluation

results on each app and on the overall dataset, respectively.

For RQ2, we design three variants of BERT+Attr-CRF model

to demonstrate the necessity of employed review attributes in

our model architecture. In detail, BERT-CRF, BERT+Cat-CRF, and

BERT+SEN-CRF respectively represent the model without review

attributes (i.e., only with text), themodel without review description

sentiment (i.e., with text and app category), and the model without

app category (i.e., with text and review description sentiment). We

reuse other experimental setups as RQ1.

For RQ3, we manually build the ground-truth clustering results

to evaluate the problematic feature clustering performance. The

criteria for labeling are to group the features that represent the

same functionality into one cluster. More specifically, we randomly

sample 100 problematic features for each app (600 in total) derived

from the results of RQ1. The two authors independently label these

problematic features into clusters in the first round, where the Co-

hen’s Kappa between two authors reaches 0.81 (i.e., a satisfactory

degree of agreement). Then follow-up discussions are conducted

until common consensus is reached. Finally, the 600 problematic

features were labeled into 20 groups. Note that we do not specify

the number of clusters in advance, because it is hard to decide

the number in our context. Our proposed clustering method does

not need to specify this parameter as well. Meanwhile, we run

our approach and each baseline (see Section 4.3) to cluster these

problematic features, and obtain each approach’s clustering per-

formance by comparing the predicted and ground-truth clustering

results for each app and the overall dataset, respectively.

The experimental environment is a desktop computer equipped

with an NVIDIA GeForce RTX 2060 GPU, intel core i7 CPU, 16GB

RAM, running on Windows 10, and training the model takes about

2.5 hours for each fold nested cross-validation.

4.5 Evaluation Metrics

4.5.1 Metrics for Problematic Feature Extraction.

We use precision, recall, and F1-Score, which are commonly-used

metrics, to evaluate the performance of SIRA for problematic fea-

ture extraction. We treat a problematic feature is correctly predicted

13https://radimrehurek.com/gensim

if the predicted phrase from SIRA for a review sentence of an app is

the same as the ground-truth one. Three metrics are computed as:

• Precision is the ratio of the number of correctly predicted

phrases to the total number of predicted phrases.

• Recall is the ratio of the number of correctly predicted

phrases to the total number of ground-truth phrases.

• F1-Score is the harmonic mean of precision and recall.

4.5.2 Metrics for Problematic Feature Clustering.

Following previous work [24], we use the commonly-used Adjusted

Rand Index (ARI) [35] and Normalized Mutual Information (NMI)

[44] to evaluate the clustering performance by comparing with the

ground-truth clustering results. Higher metric values indicate better

clustering performance. For clarity, we denoteG as the ground-truth

clustering result, and C as the predicted clustering result.

Adjusted Rand Index (ARI): It takes values in [−1, 1], reflect-

ing the degree of overlap between the two clusters. The raw Rand

Index (RI) is computed by RI = a+b
(n2)

, where a is the number of pairs

that are assigned in the same cluster inG and also in the same clus-

ter in C , and b is the number of pairs that are assigned in different
clusters both inG andC .

(n
2

)
is the total number of unordered pairs

in a set of n phrases. The raw RI score is then “adjusted for chance”

into the ARI score using the following scheme:

ARI =
RI − E (RI )

max (RI ) − E (RI )
(3)

where E (RI ) is the expected value of RI . In this way, the ARI can
be ensured to have a value close to 0.0 for random labeling inde-

pendently of the number of clusters and samples.

NormalizedMutual information (NMI): It measures the sim-

ilarity degree of the two sets of clustering results between 0 (no

mutual information) and 1 (perfect correlation).

NMI (G,C) =
MI (G,C)√
H (G)H (C)

(4)

where H (G) = −
∑ |G |
i=1 P (i) loд (P (i)) is the entropy of set G, and

P (i) = Gi

N is the probability that a phrase picked randomly falls

into cluster Gi . TheMI (G,C) is the mutual information of G and

C , i.e.,MI (G,C) =
∑ |G |
i=1

∑ |C |
j=1 P (i, j) loд

(
P (i , j)
P (i)P (j)

)
.

5 RESULTS AND ANALYSIS

5.1 Answering RQ1

The last column of Table 2 presents the performance of SIRA in

problematic feature extraction. The overall precision, recall and F1

are 84.27%, 85.06% and 84.64% respectively, which indicates that

84.27% of problematic features extracted by SIRA are correct, and

85.06% problematic features are correctly extracted from the ground-

truth ones. The results confirm that our proposed approach can

accurately extract the problematic features.

More specifically, SIRA reaches the highest precision of 90.27%

on Gmail and the highest recall of 87.37% on Yahoo Mail. Its lowest

precision is 79.18% on Yahoo Mail and the lowest recall is 84.15%

on Snapchat. We can see that even with its worst performance, an

acceptable precision and recall can be achieved.

We then examine the extracted problematic features in detail,

and find that there are indeed some observable patterns associated

2433



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Wang, et al.

Table 2: Evaluation on problematic feature extraction (RQ1).

App

Metric Method

KEFE Caspar SAFE BiLSTM-
CRF

SIRA

Instagram
P 40.32% 16.26% 14.17% 80.24% 83.59%
R 60.76% 10.49% 70.61% 71.79% 85.70%
F1 48.29% 12.46% 23.55% 75.58% 84.53%

Snapchat
P 42.08% 18.87% 12.95% 78.49% 82.63%
R 58.71% 13.81% 65.60% 74.71% 84.15%
F1 48.70% 15.74% 21.59% 76.47% 83.30%

Gmail
P 53.79% 25.60% 22.25% 87.58% 90.27%
R 78.54% 9.88% 88.21% 71.74% 84.16%
F1 63.46% 14.12% 35.49% 78.81% 87.09%

Yahoo
Mail

P 12.57% 18.26% 12.57% 74.45% 79.18%
R 70.10% 11.85% 70.10% 74.69% 87.37%
F1 21.25% 14.19% 21.25% 74.26% 83.00%

BPI
Mobile

P 41.92% 20.98% 18.22% 82.58% 87.37%
R 62.75% 9.24% 77.05% 73.53% 85.07%
F1 50.13% 12.51% 29.44% 77.63% 86.13%

Chase
Mobile

P 36.98% 17.53% 12.17% 77.23% 80.32%
R 52.85% 13.38% 64.85% 68.43% 84.59%
F1 43.16% 15.03% 20.44% 72.31% 82.26%

Overall
P 42.79%∗ 19.14%∗ 15.51%∗ 80.40% 84.27%
R 63.50%∗ 11.27%∗ 73.94%∗∗ 72.48%∗ 85.06%
F1 51.05%∗ 14.13%∗ 25.62%∗ 76.15%∗ 84.64%

Compared to SIRA, statistical significance p −value < 0.05 is denoted by ∗∗ , and
p − value < 0.01 is denoted by ∗ .

with the problematic features. For example, users would use some

negative words (e.g., “cannot”, “hardly”) or temporal conjunctions

(e.g., “as soon as”, “when”) before mentioning the problematic fea-

tures. This could probably explain why the pattern-based technique

[12, 16, 27] could work sometimes. Taking the review in Figure

1 as an example, extracting the phrases after the negative word

“can’t” would obtain the correct phrase. However, the pattern-based

techniques highly rely on the manually defined patterns and have

poor scalability in a different dataset. Furthermore, there are many

circumstances when the pattern-based approach can hardly work.

For example, it is quite demanding to design patterns for the fol-

lowing review sentence: “this update takes away my ability to view

transactions”, where the problematic feature is “view transaction”.

These circumstances further prove the advantages and flexibility

of our approach.

We also examine the bad cases where SIRA fails to work. In some

cases, SIRA can extract the core nouns and verbs of the target phrase,

but misses or additionally extracts some trivial words, especially

some adverbs/adverbials before or after the core phrase. For exam-

ple, SIRA might wrongly extract “received emails for 10 days” from

“I have not received emails for 10 days”, where the ground-truth

phrase is “received emails”. Such results pull down the performance.

This could be improved by considering PoS patterns of words when

vectorizing review sentences in future work.

Comparisonwith baselines. Table 2 presents the performance

of SIRA and four baselines in extracting problematic features. SIRA

outperforms all baselines on all metrics. This indicates that these

pattern-based baselines (i.e., KEFE, Caspar and SAFE) are far from

effective in extracting problematic features, while the deep learning-

based baseline (i.e., BiLSTM-CRF) is a bit worse than SIRA because

of the inferior semantic understanding and neglect of review at-

tributes. To further intuitively demonstrate the advantages of SIRA,

Table 3 presents two example reviews and the corresponding prob-

lematic features extracted by SIRA and four baselines.

Among the three pattern-based baselines, SAFE achieves 15.51%

precision and 73.94% recall. This is because it defines 18 PoS pat-

terns for feature-related phrases, and can retrieve a large number

of possible problematic features (i.e., high recall). For example, in

the first example of Table 3, SAFE would return two phrases. By

comparison, Caspar only extracts events from reviews containing

temporal conjunctions and key phrases, including “when”, “ev-

ery time”, which can hardly work well in this context. Taking the

first review in Table 3 as an example, Caspar can only extract the

two phrases/clauses. KEFE achieves the promising performance,

indicating that it can filter away many low-quality phrases with

the BERT classifier; yet the classification is still conducted based

on candidate phrases extracted by a pattern-based method, which

limits its performance. In the first example of Table 3, KEFE can

filter the wrong phrase “keeps crashing”, but the reserved phrase

“take a picture” is still not accurate enough due to the drawback of

pattern-based candidate phrases. BiLSTM-CRF can achieve promis-

ing performance but still not as accurate as our proposed SIRA, e.g.,

“view story” in Table 3. SIRA can be regarded as an improved ver-

sion of BiLSTM-CRF, which employs BERT fine-tuning technique

and two customized review attributes. The features extracted by

SIRA is the superset of BiLSTM-CRF, which can be also reflected

by the results in Table 2. SIRA outperforms BiLSTM-CRF in both

recall and precision, indicating that SIRA can extract features more

accurately and retrieve more problematic features.

5.2 Answering RQ2

Table 4 presents the performance of SIRA and its three variants,

respectively. The overall performance of SIRA is higher than all the

three variants. Compared with the base BERT-CRF model, adding

the app category and the sentiment attributes noticeably increase

the precision (2.03%) and recall (6.74%). This indicates that the two

attributes are helpful in identifying the problematic features. For the

performance on each app, adding the two attributes (i.e., BERT+Attr-

CRF) obtains the best performance on most apps, and adding one

of the two attributes (i.e., BERT+CAT-CRF or BERT+SEN-CRF)

occasionally achieves the best performances on some apps (e.g.,

BERT+SEN-CRF on Snapchat). Moreover, even the performance of

the base BERT-CRFmodel outperforms the best baseline in RQ1 (i.e.,

BiLSTM-CRF), which verifies the advantage of our model design.

Among the two added review attributes, the review description

sentiment attribute contributes slightly more to performance im-

provement (1.64% in precision and 5.80% in recall) than the app

category attribute (1.38% in precision and 5.26% in recall). Further-

more, we also observe that the contribution of these two attributes

overlaps to some extent, i.e., the increased performance by each

attribute is not simply added up to the performance of the whole

model. This is reasonable considering the fact that words express-

ing the user sentiment could be encoded semantically in the textual

descriptions and captured by the BERT model. Nevertheless, the

overall performance achieved by adding both of the attributes is

the highest, further indicating the necessity of our model design.

5.3 Answering RQ3

Table 5 presents the performance of SIRA in clustering problematic

features, as well as the two baselines. SIRA outperforms the two
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Table 3: Examples on extracted problematic features by different approaches (RQ1).

# Review KEFE Caspar SAFE BiLSTM-CRF SIRA

# 1
Keeps crashing
when I try to take a picture of a check.

take a picture
keeps crashing, I try to take
a picture of a check

keeps crashing,
take a picture

take a picture
of a check

take a picture
of a check

# 2
When I try to view story of friend, the majority of
the time it get stuck on a wheel and never load.

view story

I try to view story of friend,
the majority of the time it get
stuck on a wheel,
never load

view story view story view story of friend

Table 4: Ablation experiment on attributes (RQ2).

App

Metric Method
BERT
-CRF

BERT
+CAT
-CRF

BERT
+SEN
-CRF

BERT
+Attr
-CRF

Instagram
P 82.46% 84.08% 83.78% 83.59%
R 80.39% 85.60% 85.50% 85.70%
F1 81.34% 84.73% 84.56% 84.53%

Snapchat
P 84.58% 83.82% 83.38% 82.63%
R 81.49% 83.31% 85.31% 84.15%
F1 82.89% 83.48% 84.23% 83.30%

Gmail
P 88.33% 89.30% 90.59% 90.27%
R 78.37% 83.43% 83.50% 84.16%
F1 82.99% 86.16% 86.86% 87.09%

Yahoo
Mail

P 75.92% 76.67% 78.23% 79.18%
R 83.72% 83.72% 86.09% 87.37%
F1 79.54% 79.94% 81.86% 83.00%

BPI
Mobile

P 84.87% 85.92% 85.52% 87.37%
R 78.09% 84.94% 82.60% 85.07%
F1 81.25% 85.32% 83.96% 86.13%

Chase
Mobile

P 78.24% 80.26% 80.05% 80.32%
R 77.59% 82.19% 83.74% 84.59%
F1 77.73% 81.11% 81.76% 82.26%

Overall
P 82.59% 83.73% 83.95% 84.27%
R 79.69% 83.88%∗ 84.31%∗ 85.06%∗

F1 81.10% 83.78%∗∗ 84.10%∗∗ 84.64%∗

Compared to BERT-CRF, statistical significance p − value < 0.05 is denoted
by ∗∗ , and p − value < 0.01 is denoted by ∗ .

Table 5: Evaluation on problematic feature clustering (RQ3).

App

Metric Method
LDA K-Means SIRA

Instagram
ARI 0.10 0.30 0.29
NMI 0.72 0.78 0.84

Snapchat
ARI 0.19 0.13 0.32
NMI 0.80 0.72 0.85

Gmail
ARI 0.18 0.07 0.45
NMI 0.73 0.58 0.82

Yahoo Mail
ARI 0.42 0.47 0.41
NMI 0.81 0.83 0.82

BPI Mobile
ARI 0.44 0.10 0.59
NMI 0.83 0.58 0.89

Chase Mobile
ARI 0.38 0.21 0.26
NMI 0.81 0.79 0.82

Overall
ARI 0.21 0.14 0.38
NMI 0.57 0.62 0.77

baselines on the overall performance, where ARI and NMI reach

0.38 and 0.77, respectively, which is higher than that of LDA (0.21

and 0.57) and K-Means (0.14 and 0.62).

Furthermore, the improvement of SIRA on ARI is greater than

the improvement on NMI. ARI is a pair-wise metric, which is more

sensitive when two phrases that should belong to the same cluster

are wrongly assigned into different clusters, or when two phrases

which should belong to different clusters are wrongly placed into

the same cluster. The ARI results we obtained indicate that SIRA can

Table 6: Experimental dataset for investigating “where the

apps frustrating users”.

Category App # Reviews # Sentences

Social

Facebook 64,559 147,156
Instagram 63,124 153,852
TikTok 61,178 104,094
Snapchat 18,268 41,278
Twitter 15,583 36,386

Sina Weibo 10,772 37,372

Communication

Facebook
-Messenger

27,121 59,303

Gmail 9,655 24,520
Telegram 7,704 17,672
Yahoo Mail 7,090 20,124
Skype 3,266 8,139

Tencent QQ 3,194 7,326

Finance

Paytm 18,316 47,836
Chase Mobile 3,732 9,952

Alipay 3,153 9,359
BPI Mobile 1,375 3,638
BCA Mobile 386 960
WavePay 58 124

Overall 318,534 729,091

effectively avoid generating new clusters or breaking up the original

clusters. NMI is an entropy-based metric, which mainly focuses

on the changes of two distributions based on information entropy

theory. The NMI results we obtained indicate that the distribution

of the entire cluster (e.g., the number of problematic features in

each cluster) derived from SIRA are closer to the ground-truth.

The baseline approaches use the word statistics or co-occurrence

relations to cluster the problematic features. The performance of our

proposed graph-based clustering method indicates that it can better

understand the semantic relations among problematic features.

6 WHERE THE APPS FRUSTRATE USERS - AN
EMPIRICAL STUDYWITH SIRA

This section describes a large-scale empirical study with SIRA on

popular apps. First, we apply SIRA to 18 apps of three categories

(6 in each category) to demonstrate: 1) how SIRA can be utilized

in real-world practice; 2) the distribution of problematic features

across these popular apps. We also select 3 apps (1 in each category)

and conduct a user survey to verify the usefulness of SIRA.

SIRA in the Large.We crawl the app reviews of 18 apps from

three categories (6 in each category) submitted during February

2020 to December 2020 (note that this is different from the time

period in Section 4.2). Table 6 lists the statistics of this dataset,

which contains 318,534 reviews and 729,091 sentences. We run

SIRA on this large-scale dataset to obtain the visualization of the

clustered problematic features (see Section 3.4). In total, we obtain

113 clusters for social apps, 78 clusters for communication apps
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(a) Social (b) Communication (c) Finance

Figure 4: The distribution of problematic features of different categories.

Table 7: Cluster name (i.e., representative problematic fea-

ture) of each cluster in Figure 4.

# Social Communication Finance

C1 the reel option delete email send message

C2 like a post open app log in

C3 search option receive notification receive otp code

C4 load tweet send and receive email load the page

C5 use filter dark mode check deposit

C6 follow people load inbox get notification

C7 the front camera sign into account use finger print

C8 click on photo send picture and video click button

C9 send snap video call do transaction

C10 receive notification see story transfer money

C11 get live option click on call button get cash back

C12 post story sync account scan qr code

C13 access account
change the emoji
and nickname

recharge mobile
number

C14 open snap share photo change phone number

C15 send message register user open passbook

C16 watch video chat with friend book ticket

C17 dark mode get otp for login select option

C18 scroll the feed receive verification code check balance

C19 retrieve tweet quiz bot make payment

C20 get verification code change phone number receive the refund

and 90 clusters for finance apps. Figure 4 presents the visualization

results of clusters for each category with the bubble size denoting

the ratio of corresponding problematic features. For clarity, we only

present the clusters whose number of problematic features is in

top 20, by the order of cluster id. Table 7 shows the name of each

cluster in Figure 4. The following observations can be obtained.

First, our visualization can provide a summarized view of the

problematic features for each app and the comparison across apps.

This enables the developers to acquire where the app is prone to

problems, and where other apps are also likely to have issues, with

a single glance. One can also derive the detailed content of each

cluster, and example app reviews of the cluster by hovering the

cursor over the bubble in the figure (see examples in Figure 4(c)).

Second, different apps can share similar problematic features,

which can facilitate app testing and refine the testing techniques.

Take Figure 4(a) as an example, although the problematic features

are observed distributing differently across apps, all the six in-

vestigated apps would have a noticeable number of problematic

features in certain clusters (i.e., C12. post story and C13. access ac-

count). These information can warn the developers of similar apps

to notice potential problems, especially which have not yet been

reported or only mentioned in a few reviews. Further, developers

can leverage reviews from similar apps for quality assurance activi-

ties, rather than only focus on the limited set of reviews of its own

app. This is especially the case for the less popular apps which only

have few reviews regarding app problems.

Third, different apps can have their unique problematic features

and problematic feature distributions, which further indicates the

necessity of review mining and analysis in a fine-grained way. For

example, from Figure 4(b), we can see that, based on the user re-

ported problems, 63% reviews of the Facebook Messenger app relate

with feature C8. send picture and video. By comparison, its competi-

tor Gmail app is mainly prone to bugs for quite different feature

C4. send and receive email. In addition, for its another competitor

Telegram app, the problematic features are distributed more evenly,

i.e., the number of user submitted reviews do not exert big differ-

ence across C4, C7 and C8, and the largest cluster (i.e., C7. sign

into account) occupies a mere of 33% reviews. From these insights

provided by our approach, the developers can obtain a clear under-

standing of an app about the features that are prone to problems, so

as to arrange the follow-up problem solving and allocate the testing

activity for subsequent versions. More than that, these information

can also assist the developers in the competitive analysis of apps,

e.g., acquire the weakness of their app compared with similar apps.

Furthermore, a series of attempts can be made to refine the app

testing techniques. For example, one can recommend problematic

features to similar apps in order to prioritize the testing effort, or

recommend related descriptions (mined from app reviews) to similar

apps to help bug detection. In addition, the automated graphical user

interface (GUI) testing techniques can be customized and the testing

contents can be prioritized. Current automated GUI testing tools

tend to dynamically explore different pages of a mobile app through

random actions (e.g., clicking, scrolling, etc) to trigger the crash or

explicit exceptions [37]. If one could know the detailed problematic

features of other similar apps in advance, the explored pages can

be re-ranked so that the bug-prone features can be explored earlier

to facilitate the bugs being revealed earlier. We will further explore

problematic features based app testing in our future work.

A User Survey. In order to assess the usefulness of SIRA, we

conduct a user survey on three popular apps:Weibo, QQ and Ali-

pay. We invite 15 respondents (5 from each company) in total,

including 2 product managers, 5 requirement analysts, and 8 devel-

opers, who are familiar with the app reviews of their own company.
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Figure 5: Feedback of user study.

More specifically, we conduct SIRA on the reviews obtained in the

first week of May 2021, which contains 177 reviews from Weibo,

149 from QQ, and 177 from Alipay after preprocessing. Each re-

spondent examines the extracted problematic features, clusters and

visualization results obtained by SIRA, and answer the following

three questions: 1) (Usefulness) Can SIRA help understand user

requirements from app reviews? 2) (Extraction) Can SIRA extracted

problematic features accurately? 3) (Clustering) Can SIRA clus-

ter problematic features accurately? We provide five options for

each question from 1 (strongly disagree) to 5 (strongly agree). The

first question concerns the usefulness of SIRA, i.e., whether SIRA

can save effort for analyzing large-scale app reviews. The last two

questions concern the performance of SIRA on problematic feature

extraction and clustering respectively, when analyzing app reviews

in real-world practice.

Figure 5 shows the box plot statistics of respondents’ feedback.

There are respectively 11, 13 and 10 (out of 15) respondents give

the score over 3 for Q1, Q2, and Q3. Most of them (over 73%) are

satisfied (score over 3) with the usefulness of SIRA, and think SIRA

can help them obtain a fine-grained understanding on problematic

features. The average score of Q1, Q2, and Q3 are 3.93, 4.13, and 3.93

respectively. Besides, three of them heard about or tried existing

review analysis tools such as INFAR [12] and SUR-Miner [15], and

they admit the advantages of SIRA as its extracted features and

derived clusters are finer-grained and more meaningful. We also

interviewed the respondents about the possible enhancement of

SIRA. They said there were still some cases where SIRA doesn’t

work well, such as some extracted phrases contain two or more

features, which leads to poor performance of clustering. This can

be solved in future work by exploring the patterns of such tangled

features and deconstructing them into separate ones. In addition, we

received some suggestions from developers for better visualizations

(e.g., supporting interactive visual analytics).

7 DISCUSSION

Advantage Over Topic Discovery Approaches. There are sev-

eral previous approaches which involve topic discovery [12, 15,

52, 57, 58]. Yet, their discovered topics are more coarse-grained

than our proposed approach. For example, based on 95 mobile apps

like Facebook and Twitter from Google Play, MARK [57] can only

discover such topics as crash, compatibility, and connection, and

PUMA [58] generates topics like battery consumption. Similarly,

SUR-Miner [15] generates topics such as predictions, auto-correct,

and words. SURF [52] can discover topics such as GUI, app, and

company, while INFAR [12] can generate topics like update, radar,

download. With these discovered topics, the developers can acquire

a general view about the problems the app undergoes, yet could not

get a clear understanding about where it is wrong. By comparison,

as demonstrated in Figure 4 and Table 7, our proposed approach

can generate more finer-grained topics as open message, get crash

back, which helps developers achieve a deeper and more accurate

understanding about where the app is wrong.

Threats to Validity. The external threats concern the gener-

ality of the proposed approach. We train and evaluate SIRA on the

dataset consisting of six apps from three categories. The selected

apps and their belonging categories are all the commonly-used

ones with rich reviews in practice, which relatively reduces this

threat. In addition, we demonstrate the usage of SIRA on a much

bigger dataset derived from 18 apps. The results are promising,

which verifies its generality further. Regarding internal threats,

SIRA is a pipeline method, where the problematic feature clustering

depends on the accuracy of extracting problematic features. Since

we have seen a relatively high performance of SIRA on problematic

feature extraction, we believe SIRA can alleviate the error accu-

mulation to some extent. In addition, we reuse the source code

from the original paper (i.e., for Caspar and KEFE), or the open

source implementation (i.e., for SAFE, K-Means, and LDA) for the

baselines, which help ensure the accuracy of the experiments. The

construct validity of this study mainly questions the evaluation

metrics. We utilize precision, recall and F1-Score to evaluate the

performance of problematic feature extraction. We consider that a

problematic feature is correctly extracted when it is the same as the

ground-truth, which is a rather strict measure. The metrics used to

evaluate clustering results are also commonly used [24].

8 CONCLUSION

To help acquire a concrete understanding about where the app is

frustrating the users, this paper proposes a semantic-aware, fine-

grained app review analysis approach SIRA, which can extract,

cluster, and visualize the problematic features of app reviews. SIRA

designs a novel BERT+Attr-CRF model to extract fine-grained prob-

lematic features, and employs a graph-based clustering method to

cluster them. We evaluate SIRA on 3,426 reviews from six apps,

and the results confirm the effectiveness of the proposed approach.

We further conduct an empirical study on 318,534 reviews from

18 popular apps to explore its potential application and usefulness

in real-world practice. Our source code and experimental data are

publicly available at: https://github.com/MeloFancy/SIRA.
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